Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.12.02.22282697

RESUMO

SARS-CoV-2 Omicron has become the predominant variant globally. Current infection models are limited by the need for large datasets or calibration to specific contexts, making them difficult to cater for different settings. To ensure public health decision-makers can easily consider different public health interventions (PHIs) over a wide range of scenarios, we propose a generalized multinomial probabilistic model of airborne infection to systematically capture group characteristics, epidemiology, viral loads, social activities, environmental conditions, and PHIs, with assumptions made on social distancing and contact duration, and estimate infectivity over short time-span group gatherings. This study is related to our 2021 work published in Nature Scientific Reports that modelled airborne SARS-CoV-2 infection (Han, Lam, Li, et al., 2021). It is differentiated from former works on probabilistic infection modelling in terms of the following: (1) predicting new cases arising from more than one infectious in a gathering, (2) incorporating additional key infection factors, and (3) evaluating the effectiveness of multiple PHIs on SARS-CoV-2 infection simultaneously. Although our results reveal that limiting group size has an impact on infection, improving ventilation has a much greater positive health impact. Our model is versatile and can flexibly accommodate other scenarios by allowing new factors to be added, to support public health decision-making.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Infecções
2.
preprints.org; 2020.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202003.0364.v1

RESUMO

Background: Covid-19 was first reported in Wuhan, China in Dec 2019. Since then, it has been transmitted rapidly in China and the rest of the world. While Covid-19 transmission rate has been declining in China, it is increasing exponentially in Europe and America. Although there are numerous studies examining Covid-19 infection, including an archived paper looking into the meteorological effect, the role of outdoor air pollution has yet to be explored rigorously. It has been shown that air pollution will weaken the immune system, and increase the rate of respiratory virus infection. We postulate that outdoor air pollution concentrations will have a negative effect on Covid-19 infections in China, whilst lockdowns, characterized by strong social distancing and home isolation measures, will help to moderate such negative effect. Methods: We will collect the number of daily confirmed Covid-19 cases in 31 provincial capital cities in China during the period of 1 Dec 2019 to 20 Mar 2020 (from a popular Chinese online platform which aggregates all cases reported by the Chinese national/provincial health authorities). We will also collect daily air pollution and meteorology data at the city-level (from the Chinese National Environmental Monitoring Center and the US National Climatic Data Center), daily inter-city migration flows and intra-city movements (from Baidu). City-level demographics including age distribution and gender, education, and median household income can be obtained from the statistical yearbooks. City-level co-morbidity indicators including rates of chronic disease and co-infection can be obtained from related research articles. A regression model is developed to model the relationship between the infection rate of Covid-19 (number of confirmed cases/population at the city level) and outdoor air pollution at the city level, after taking into account confounding factors such as meteorology, inter- and intra-city movements, demographics, and co-morbidity and co-infection rates. In particular, we shall study how air pollution affects infection rates across different cities, including Wuhan. Our model will also study air pollution would affect infection rates in Wuhan before and after the lockdown. Expected findings: We expect there be a correlation between Covid-19 infection rate and outdoor air pollution. We also expect that reduced intra-city movement after the lockdowns in Wuhan and the rest of China will play an important role in reducing the infection rate. Interpretation: Infection rate is growing exponentially in major cities worldwide. We expect Covid-19 infection rate is related to the air pollution concentration, and is strongly dependent on inter- and intra-city movements. To reduce the infection rate, the international community may deploy effective air pollution reduction plans and social distancing policies.


Assuntos
COVID-19 , Coinfecção , Infecções Respiratórias , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA